Skip to content
SKU: AWS-MLDWTS

$2,700.00

This course explores how to the use of the iterative machine learning (ML) process pipeline to solve a real business problem in a project-based learning environment. Students will learn about each phase of the process pipeline from instructor presentations and demonstrations and then apply that knowledge to complete a project solving one of three business problems: fraud detection, recommendation engines, or flight delays. By the end of the course, students will have successfully built, trained, evaluated, tuned, and deployed an ML model using Amazon SageMaker that solves their selected business problem. Learners with little to no machine learning experience or knowledge will benefit from this course. Basic knowledge of Statistics will be helpful.

Select a date below

Categories:
Topics:

Dates are listed in Pacific Time Zone

= Guaranteed to run date

Description

Print Friendly, PDF & Email

Overview:

This course explores how to the use of the iterative machine learning (ML) process pipeline to solve a real business problem in a project-based learning environment. Students will learn about each phase of the process pipeline from instructor presentations and demonstrations and then apply that knowledge to complete a project solving one of three business problems: fraud detection, recommendation engines, or flight delays. By the end of the course, students will have successfully built, trained, evaluated, tuned, and deployed an ML model using Amazon SageMaker that solves their selected business problem. Learners with little to no machine learning experience or knowledge will benefit from this course. Basic knowledge of Statistics will be helpful.

Prerequisite(s):

  • Basic knowledge of Python programming language
  • Basic understanding of AWS Cloud infrastructure (Amazon S3 and Amazon CloudWatch)
  • Basic understanding of working in a Jupyter notebook environment

Audience:

This course is intended for:

  • Developers
  • Solutions Architects
  • Data Engineers
  • Anyone with little to no experience with ML and wants to learn about the ML pipeline using Amazon SageMaker

Course Objectives

In this course, you will:

  • Select and justify the appropriate ML approach for a given business problem
  • Use the ML pipeline to solve a specific business problem
  • Train, evaluate, deploy, and tune an ML model using Amazon SageMaker
  • Describe some of the best practices for designing scalable, cost-optimized, and secure ML pipelines in AWS
  • Apply machine learning to a real-life business problem after the course is complete

Activities:

This course includes presentations, group exercises, demonstrations, and hands-on labs.

Outline:

Module 1: Introduction to Machine Learning and the ML Pipeline

Module 2: Introduction to Amazon SageMaker

Module 3: Problem Formulation

Module 4: Preprocessing

Module 5: Model Training

Module 6: Model Evaluation

Module 7: Feature Engineering and Model Tuning

Module 8: Deployment

Additional information

Length

4 days

Guaranteed to run

No